A three solution theorem for singular nonlinear elliptic boundary value problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems

The singular nonlinear three-point boundary value problems { −(Lu)(t) = h(t)f (u(t)), 0 < t < 1, βu(0)− γ u′(0) = 0, u(1) = αu(η) are discussed under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, where (Lu)(t) = (p(t)u′(t))′+q(t)u(t), 0 < η < 1, h(t) is allowed to be singular at both t = 0 and t = 1, and f need not be nonnegative. The associated ...

متن کامل

Nonlinear Elliptic Boundary Value Problems

It is the object of the present note to present a new nonlinear version of the orthogonal projection method for proving the existence of solutions of nonlinear elliptic boundary value problems. The key point in this method is the application of a new general theorem concerning the solvability of nonlinear functional equations in a reflexive Banach space involving operators which may not be cont...

متن کامل

Parallel Solution of Elliptic Boundary Value Problems

We describe the development of some parallel iterative techniques for solving boundary value problems for elliptic partial differential equations. Using domain decomposition techniques, we modify standard sequential iterative techniques to obtain effective parallel methods. We contrast implementations on distributed-memory and shared-memory scalable parallel processors. We describe the use of t...

متن کامل

Solutions of Nonlinear Singular Boundary Value Problems

We study the existence of solutions to a class of problems u + f(t, u) = 0, u(0) = u(1) = 0, where f(t, ·) is allowed to be singular at t = 0, t = 1.

متن کامل

A Solution Routine for Singular Boundary Value Problems

In this report, we discuss the implementation and numerical aspects of the Matlab solver sbvp designed for the solution of two-point boundary value problems, which may include a singularity of the first kind, z′(t) = f(t, z(t)) := 1 (t− a) · z(t) + g(t, z(t)) , t ∈ (a, b), R(z(a), z(b)) = 0. The code is based on collocation at either equidistant or Gaussian collocation points. For singular prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2015

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.11.012